Metamorphic

Bottom Hole Assembly

About 10 days ago, drilling was stopped at the Alpine Fault drill site so that geophysical measurements could be made down the borehole, and the bit could be replaced. This involved lifting all of the drill rods out one by one and stacking them next to the rig. Next to come up was the bottom hole assembly (BHA) comprising these thick steel pipes that Rupert Sutherland is describing to the camera in this image. Last to appear was the business end of the drill string including the drill bit itself. This photo shows the bit being replaced using some impressive sized hand tools: The view looking down into the top of the borehole – 400 metres deep and filled with mud. Here is the video of Rupert explaining the Bottom Hole Assembly: Once the geophysical measurements were taken down the hole (more about these later), the Bottom Hole Assembly was put back together and lowered back down the borehole. Unfortunately disaster struck when the wire snapped and 7 tonnes of unattached BHA dropped down the hole. To cut a long story short, this delayed progress for about a week, until finally the detached parts were fished out of the hole using a variety of highly specialised methods. You can read a little more about these events here in Rupert’s Blog:1.The Calamity.  2. Landing the Fish 

Bottom Hole Assembly Read More »

Stepping Over the Boundary

This is a classic view of the Southern Alps from Lake Matheson on a still morning, showing the high peaks of Mount Tasman and Mount Cook.The Alpine Fault runs along the foot of the steep rangefront, extending right up the West Coast of the South Island. The mountains are therefore part of the Pacific Plate and all the flat land in front, made up of glacial outwash gravels, is on the Australian Plate. This graphic shows the Alpine Fault as a very distinct line dividing the high mountain topography to the East and from the coastal lowlands along the West Coast. Arrows show the horizontal directions of fault ruptures along the fault, but there is also a vertical component that is pushing up the Southern Alps. At Gaunt Creek near Whataroa, you can get right up close to a cliff exposure of the Alpine Fault.  The pale green rocks in the foreground have endured being crushed and uplifted along the  fault line. They have been altered into what is known as cataclasite, consisting of clay and lots of crushed rock fragments.You can visit this location by checking out our GeoTrips website here: www.geotrips.org.nz/trip.html?id=57 The low angled line of the Alpine Fault is very distinct on the right side of the photo, with the metamorphosed cataclastic rocks that have been uplifted from kilometres down in the crust being pushed over the much younger gravels to the West (right). You really can put your finger on New Zealand’s plate boundary here! The Pacific Plate is on the upper left, thrust over ice age gravels of the Australian Plate on the right hand side of the image. The photo gives a good impression of the nature of the crushed rocks. A more distant view of the cliff section from the creek shows how the uplifted rocks have over-ridden the gravels which are about 15 to 16 thousand years old. The two white arrows show the line of the fault. A short distance away is the Deep Fault Drilling Project (DFDP1) Observatory that was set up after two boreholes were drilled here in 2011. The fault is dipping at about a 40 degree angle, and the boreholes were positioned to intercept it at around 100m depth. Instruments down the boreholes include seismometers and other sensors that have been installed to better understand the physical conditions along the fault as it extends down below the surface. For a bit more background to the DFDP have a look at this previous post from 2011

Stepping Over the Boundary Read More »